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The motion of a single point defect in a cylindrical cavity � lled with a nematic liquid crystal
is described by solving numerically the simpli� ed equations of nematodynamics. Perfect
homeotropic anchoring for the director on the lateral boundary would result in the creation
of domains with equal elastic energy, escaped upwards or downwards along the cavity axis
and separated by point defects of strength Ô 1. Defects do not move as long as they are
su� ciently far apart. However, small deviations from homeotropic anchoring remove this
degeneracy and the energetically favourable domains start to expand at the expense of the
others, thus setting the defects in motion along the tube. We present a new numerical
approach, which neglects the back� ow, for studying the in� uence of both the pretilt and the
elastic anisotropy (K33 Þ K11 ) on the motion of a defect. We show how even very small pretilt
angles (~1ß ) result in speeds observed in experiments. For a moderate elastic anisotropy, the
velocity of a 1 1 defect equals the velocity of a Õ 1 defect, whereas for K33& K11 a 1 1 defect
moves faster than a Õ 1 defect. For small pretilts we con� rm a good qualitative agreement
with an existing analytical approach, which proves inaccurate for large pretilts.

1. Introduction be stable [8]. When the radius R of the tube is large
enough (R * 1mm) the escaped structure is the only stableRecently, and in particular in connection with

coarsening dynamics, the motion of defects in condensed one. Director � elds escaped either upwards or down-
wards along the tube axis are energetically equivalent,matter is again attracting much interest, both experi-

mentally and theoretically; see, for example, [1–3]. and so domains with opposite escapes can appear, each
separated from the adjacent one by a point defect withAlthough the � rst experiments with defects in nematic
topological charge s of strength 1 and alternating sign.liquid crystals con� ned to cylindrical cavities date back

The anchoring on the lateral boundary of a capillaryto the 1970s, the theoretical interpretation of the experi-
tube can, however, fail to be homeotropic. Here wemental results is still a matter of dispute. Steady motion
imagine the director to be tilted relative to the boundarywas reported for defects connected in pairs by strings
normal, everywhere in one and the same direction[3–5] and for a single defect separating two domains with
along the axis of the tube. It might be expected that thediŒerent free energy densities. This latter case, realized
resulting director con� gurations would be only slightlyin a capillary with pretilted anchoring, was � rst reported
altered, especially when the pretilt angle Q0 is su� cientlyand qualitatively described by Guidone Peroli et al.
small. Figure 1, however, illustrates that this is not the[6, 7]. The motion of a single defect driven by slightly
case: upwards and downwards escapes now fail to betilted anchoring conditions on the lateral boundary of a
symmetric, thus removing the degeneracy of the homeo-cylindrical tube represents one of the simplest dynamical
tropic anchoring. In the presence of a defect, this lackphenomena involving defects in liquid crystals. It serves
of symmetry is enough to produce a dramatic change:as a test for diŒerent theoretical approaches, whose out-
the two tilted con� gurations cannot be at equilibrium,comes could be compared with the available experimental
because the domains with opposite escapes now storedata.
diŒerent energies, the one � uted in the same directionIn cylindrical cavities with homeotropic anchoring,
as the boundary director being less distorted than thethe known equilibrium structures for the director � eld,
other, as sketched in � gure 1 for a 1 1 and a Õ 1 defect.namely, planar radial, planar polar, and escaped, can all
One domain then expands at the expense of the other,
thus pulling the point defect in the domain wall between*Author for correspondence; e-mail: jure.bajc@gov.si
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214 J. Bajc et al.

given the following form by Oseen and Frank:

F [n] )
1
2 P

B

{K11 (div n)2

1 K22 (n ¯ curl n)2 1 K33 |nm curl n|2

1 (K22 1 K24 )[tr (Dn)2 Õ (div n)2]} dV (1)

where the moduli K11 , K22 , K33 , and K24 are the splay,
twist, bend, and saddle-splay elastic constants, respectively.
Equation (1) reduces to a far simpler form if we set
K11 5 K22 5 K33 5 K and K24 5 0, that is,

F [n] 5
K
2 P

B

| = n|2 dV (2)

which is known as the one-constant approximation to F .
The equilibrium equation for (1) can be written as

Figure 1. Schematic representation of the � elds n
Õ

and n
+

.
The topological charges are s 5 1 1 (top) and s 5 Õ 1

H ) h Õ (n ¯ h)n 5 0; h ) Õ
q f

qn
1 div A q f

q = nB (3)
(bottom). The arrow indicates the direction of motion.

where f is the integrand on the right-hand side of (1)them. Here we study in detail the motion of a single
and h is the molecular � eld (cf. p. 107 of [10]). If B ispoint defect along the axis of a cylindrical tube, a
an in� nite cylinder with radius R that enforces homeo-phenomenon � rst predicted and approximatel y described
tropic anchoring on its lateral boundary, the solutions ofin [6], to explain qualitatively some experimental data
equation (3) are the well-known escaped � elds [11, 12].indicating a constant speed in the early stages of the
In the one-constant approximation (2), the analyticalcoalescence of two defects [9].
form of these � elds in the frame (e

r
, e

q
, e

z
) of cylindricalIn § 2, we give a concise theoretical account of the

coordinates iscontinuum theory for nematic liquid crystals. We calcu-
late the torques acting on the nematic director, and n

Ô
5 cos Q

Ô
e
r
1 sin Q

Ô
e
z

with
show how the nematodynamics, which is dominated by
friction, can be described either as a balance between

Q
Ô

(r) 5 Ô Cp

2
Õ 2 arctan A r

RBD (4)
viscous and elastic torques or as the dissipation of elastic
energy during the rearrangement of the director in time.
We brie� y recall a simple analytical model for the where one sign or the other applies according to whether

the director � eld escapes upwards (n
+

) or downwardsevolution of the director � eld around a point defect [6].
In § 3, this process is simulated numerically by use of a (n

Õ
) along e

z
. By symmetry, both these � elds store the

same elastic energy per unit length of the cylinder.new adapted relaxation method to describe the motion
of the defect and to explore the role played by the elastic The simplest escaped � eld that fails to be uniform in

z has a single defect with topological charge s either 1 1anisotropy of the material. In § 4, we discuss our results
and compare them with previous theoretical outcomes or Õ 1, placed somewhere along the axis r 5 0. Changing

the position of the defect, that is, moving the domainand experimental data. The paper is closed by a discussion
in § 5 on further applications of the proposed method wall, obviously does not change the total free energy,

and so no force acts on the defect. To allow it to moveand its possible improvement.
spontaneously , this symmetry must somehow be broken.
It was conjectured that the � lling of the capillary might2. Theory

The molecules of a nematogenic material are typically determine a favoured direction and produce a slight
deviation from the homeotropic anchoring [6]. Theelongated in one direction. On average, the long molecular

axes tend to orient parallel to one another, and their degeneracy of the homeotropic anchoring is thus removed
and one escaped domain is more energetic than the other.average direction is described by a director � eld n. This

� eld represents a mapping onto the unit sphere S2. We The less energetic domain tends to expand at the expense
of the other, an eŒective force on the defect then appearssay that a defect occurs wherever the map n is discon-

tinuous. The elastic free energy stored in a region B was and sets it in motion.
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215Dynamics of nematic point defects

The time evolution of non-equilibrium nematic con- balance of energy requires that the rate of change in
the elastic free energy balances the viscous dissipation D :� gurations is well described by the equations of nemato-

dynamics [13, 14]. Away from equilibrium, H is diŒerent
F 1 D 5 0. (8)from zero. It represents the generalized elastic force

acting on the director n: when this evolves towards less When n is the axisymmetric � eld (6), D simply reduces
energetic con� gurations, some kind of friction is likely to
to be involved, as Landau and Khalatnikov pointed out
in general nearly 50 years ago [15]. In the case of

D 5 c1 P
B

Q2
t
dV . (9)nematics, the appropriate friction is quite complicated

and a complete description involves � ve independent
It is shown in [17] that expressions (8) and (5) agree.viscosity coe� cients coupling diŒerent reorientation modes

The motion of a single defect along the axis of awith the hydrodynamic � ow; see [13, 14]. For simplicity,
capillary tube due to a prescribed pretilt on the lateralin the following we neglect completely the back� ow, that
boundary has been studied qualitatively and explained byis, the � ow induced by the director motion: thus, only
an analytical model in [6]. The complete mathematicalthe rotational viscosity c1 , responsible for the friction on
description of the model can be found in [7, 19, 20].the director reorientation, will be taken into account.
Since our main objective here is to compare the out-Although the eŒects of the back-� ow on the motion of
comes of this model and those of a numerical approacha point defect seems to be so subtle as to depend on the
to the same problem, we only brie� y recall the basicsign of the defect’s topological charge [16] (a view also
ideas and the results of the analytical model. Solvingsupported by some experimental evidence [5]), we shall
explicitly the dynamical equation (7) is avoided byhere neglect them because no technique (either analytical
computing both the time rate F of the elastic free energyor numerical) is yet available to include them. In this
and the dissipation D as functions of the speed v of therespect our study is still preliminary. On the other hand,
defect for a frozen director � eld around it. This directorit is more justi� able to neglect the inertial terms, because
� eld is determined by solving an equilibrium problem.nematodynamics proves to be completely dominated by
Essentially, one mimics the director around a defect withfriction [10]. Thus, the balance of the generalized elastic
a 1 1 or Õ 1 topological charge by minimizing the elasticand viscous forces results in the equation of motion
free energy within a restricted class of admissible � elds,

c1nÁ 5 H (5 ) all bearing a defect in a prescribed position. To within
an non-essential additive constant, the energy stored inwhere a superimposed dot denotes the material time
a cylinder enclosing a 1 1 defect turns out to be [6]derivative. Upon assuming that n is an axisymmetric

� eld even in the presence of defects (see � gure 1), that is, F 5 4pK sin Q0z (10)

n 5 cos Q(t, r, z)e
r
1 sin Q(t, r, z)e

z
(6 )

where z is the position of the defect along the cylinder
axis. One then imagines that the defect is free to moveequation (5) becomes
along the capillary axis, dragging along the static director
� eld without distorting it. Knowing explicitly this � eldc1Q

t
5 (K11 sin2 Q 1 K33 cos2 Q)

1

r
(rQ

r
)
r allows one to compute the dissipation D in equation (9)

as a function of the defect velocity v ) zÇ :1 (K11 cos2 Q 1 K33 sin2 Q)Q
zz

D 5 pc1p1/2R cos Q0{[A(Õ Q0 )]1/2 1 [A(Q0 )]1/2 }v2Õ (K11 Õ K33 ) cos (2Q)Q
r
Q
z
1 sin Q cos Q

(11)
3 CK11

r2
1 (K11 Õ K33 )AQ2

r
Õ

Q
z

r
Õ 2Q

rz
Õ Q2

zBD where R is the radius of the capillary and A is de� ned
as

(7 )

where the subscripts t, r, and z denote partial derivatives A(Q0 ) )
1 1 sin Q0
1 Õ sin Q0

[2 ln 2 Õ 1 Õ 2 ln (1 1 sin Q0 )
with respect to the corresponding variables. Equation (5)
embodies the balance between viscous and elastic 1 sin Q0]. (12)
torques acting on the director; as shown in [17], it can
be derived from a dissipation principle (see [18] for The reader interested in more details about the com-

putations leading to equation (11) will � nd them ina general method also applicable to � uids with more
complex microstructures) . In the absence of back� ow [20]. Here it su� ces to remark that by combining

equations (11), (10), and (8) the velocity of a singleand when the molecular kinetic energy is neglected, the
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216 J. Bajc et al.

defect can be given the following form: solving equation (7) for a given Q0 on the lateral wall
and only a radially dependent director, Q 5 Q(r). The

computational segment must thus be chosen to be longv 5
4

p1/2G tan Q0
[A(Õ Q0 )]1/2 1 [A(Q0 )]1/2H K

c1R
. (13)

enough also to allow the director � eld to adjust to the
escaped structure at both ends. It turns out that forA natural measure for the velocity v is the ratio K/(c1R),
modest pretilts and small elastic anisotropies, the directorwhich is inversely proportional to the radius of the tube:
� eld relaxes to a nearly undistorted escaped con� gurationthus, defects move faster in smaller tubes.
over the distance 2R. A segment with length 6R havingEquation (13) shows that in a tube with tilted
a single defect near the centre should thus su� ce.anchoring a single defect moves with a constant velocity

Special care must be taken not to violate the head–tailwhich depends on the material constants of the liquid
symmetry of the nematic director in calculating thecrystal and the pretilt angle Q0 . For small values of Q0
derivatives of Q, especially near defects where Q changesthis velocity is proportional to Q0 . The velocity v thus
rapidly. If, for example, the diŒerence DQ at two neigh-vanishes when Q0 5 0, con� rming that a defect does not
bouring mesh-points exceeds p/2, one would then arguemove when the anchoring is homeotropic. To study the
that the actual diŒerence is not DQ, but DQ Õ p, becausemotion of defects in a more quantitative way that also
the head–tail symmetry is thus preserved, while thetakes into account non-equilibrium structures, we now
director � eld exhibits less elastic energy along withturn to a numerical simulation.
smaller derivatives . It transpires that for su� ciently dense

meshes the head–tail symmetry of regular director � elds
would not be violated even if the director � eld were3. Numerical approach

In contrast with the analytical approach, the numerical treated as a regular vector � eld. On the contrary, when
modelling of defect dynamics involves the full time defects are present no mesh could possibly prevent this
evolution of the director � eld, which requires solving symmetry from being broken, no matter how dense. In
equation (7). In this section we brie� y describe how this the case under study the defect is located on the tube
can actually be carried out. axis, but in general it can be anywhere between two

The numerical computation is performed on a � nite neighbouring mesh-points. Derivatives of Q with respect
segment of the tube. When assigning the length of this to the radial coordinate are not critical even in the
segment, two opposite requirements must be satis� ed: it vicinity of the defect, because the changes of Q in the
should be su� ciently short to reduce the computational radial direction are smooth enough. Only the derivatives
time, and su� ciently long to reduce the in� uence of the of Q with respect to the axial coordinate at the nearest
end-caps. To satisfy both requirements, equation (7 ) is mesh-points away from the cylinder axis might not be
solved in a rectangular non-uniform mesh, denser near appropriately computed because of a spurious violation
the defect than farther away (see � gure 2). To solve (7) of the head–tail symmetry. Thus, for these mesh points,
we also need to impose the appropriate boundary con- the director reorientation is calculated by also taking
ditions at the ends of the computational segment, which into account the surrounding points.
are not particularly obvious. We select them so as to In the case of conical boundary conditions with only
match the equilibrium escaped structure that agrees a defect, we developed a new method. Since by the above
with the boundary condition on the lateral wall and the analysis the driving force is expected to be constant, it
appropriate escape direction. Both equilibrium structures is natural to assume that the defect (together with the
(escapes upwards and downwards) are obtained by domain wall around it) soon reaches a steady asymptotic

velocity. Practically, this means that the picture would

not change, if the camera, so to say, were moving along

the tube with the velocity of the defect. Numerical

implementations of this idea would be relatively simple,

if only the position of the defect could be determined
accurately enough.

A certain initial director con� guration is set forth with

the defect placed somewhere in the middle of a chosen

mesh-cell. Since we are deriving the steady asymptotic
Figure 2. A non-uniform mesh to solve equation (7) with velocity solution, almost any initial structure surrounding

� nite diŒerences. The length of the computational segment
the appropriate point defect, and satisfying the boundary

is 6R. The mesh shown here has 10 3 40 points in the
conditions, is acceptable; for less realistic initial structuresr 3 z directions, whereas the one actually employed had

40 3 150 points. it will only take more iterations to reach the same � nal
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217Dynamics of nematic point defects

quasi-stationary state. Then, Q
t

is computed and values in the vicinity of the defect. Although a denser mesh
could improve the stability of the method, this wouldof Q in the entire mesh are changed in a small time step

Dt. So the defect moves by Dz. After a number of steps not solve the localization problem. High velocities result
in deviations from the static solution at the very core ofit would approach the boundary of the mesh-cell, thus

making it di� cult to compute the derivatives of Q. To the defect [21], thus making it appropriate to resort to
asymmetric hedgehogs or even to a variable scalar orderkeep the defect inside the mesh-cell, the entire texture is

shifted by Õ Dz. Numerically, this is done by a simple parameter as well.
linear interpolation of Q from the closest mesh-points.
This procedure yields a steady state when Dz fails to 4. Results

The numerical simulation for small pretilts in the one-change at each step. In other words, the camera is
then following a moving defect at precisely its velocity constant approximation shows the expected dependence

on the pretilt Q0 (see � gure 4). While the qualitativev 5 Dz/Dt. If the time steps are small enough, the defect
remains near the centre of the mesh-cell and the numerical behaviour is the same for both approaches, the analytical

velocity is approximately 40% less than the numericalaccuracy is expected to be improved.
For the above method it is crucial to determine the one for pretilts below 20ß . This diŒerence can be explained

by a simple argument. While the force acting on theposition of the defect as accurately as possible. The basic
assumption behind the locating algorithm is a known defect is approximately the same in both models, as it

arises simply from the lack of symmetry between thedirector � eld in the immediate vicinity of a moving defect.
We assume that even if a defect is moving at a con- opposite escapes, the energy dissipated in the motion

is clearly overestimated in the analytical approach, forsiderable speed, the elastic forces prevail in its vicinity,
and so in case of equal splay (K11 ) and bend (K33 ) elastic which the director deformation around the defect is

stiVer than for the numerical approach, as it is moreconstants, the director � elds with s 5 Ô 1 (also called the
radial and hyperbolic hedgehogs, respectively) are locally constrained. Thus, equation (8), which holds for both

approaches, qualitatively justi� es the diŒerence in thedescribed by the functions
two estimates for the defect velocity. Moreover, the com-
parison between the elastic free energies for small pretiltsQ

Ô
5 Ô arctan Az

rB . (14)
(see � gure 5) is also in a quantitative agreement with
the above considerations. For a tube segment of lengthIn the numerical algorithm, the director � eld calculated
6R with a defect in the centre, the energy that exceedsin the vicinity of the defect is compared with the one
12pKR is associated with the defect [20]. For smallmodelled by (14). The putative position of the defect is
pretilts, the ratio between the free energies associatedvaried while searching for the minimal diŒerence between
with the defect in the analytical and in the numericalmodelled and computed director � elds. To keep this
approach is almost inversely proportional to the corres-procedure to a minimum only the nearest mesh-points
ponding ratio of the velocities (� gures 4 and 5). Thus,are taken into account (see � gure 3). Since, by symmetry,
for small pretilts, the discrepancy between the twothe orientation of the director on the tube axis can only
approaches is simply due to a more or less adequatebe parallel to the axis, two oŒ-axis mesh-points alone

are considered to locate the defect.
This algorithm is only reliable for cylinder radii much

larger than the defect core and moderate pretilts, when
the director � eld is likely to retain its equilibrium form

Figure 4. Velocity of a single defect as a function of the pretilt
angle in the range 0 <Q0 <20 ß . Solid and dashed lines refer

Figure 3. The point defect is located by comparing the radial to the numerical and analytical approaches, respectively.
The linear approximation is indicated by a dotted line inhedgehog and the director � eld computed numerically in

the vicinity of the tube axis. both cases.
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218 J. Bajc et al.

equilibrium one. To illustrate this further, we repeated the
numerical simulation for several pretilts, but statically;
that is, � xing the defect position in the centre of the
tube segment and searching for an equilibrium solution.
The minimum elastic free energy is indeed smaller than
the one carried by the moving defect (see � gure 5),
certainly up to Q0 # 50 ß . Figure 6 shows the velocity of
the defect delivered by the two models employed here,
in the range where they can be compared.

We also studied the dependence of the defect velocity
on the elastic anisotropy K33 /K11 at � xed pretilt angle
(see � gure 7). When K33 is su� ciently large, for instance
in the case of pretransitional increase, one expects bothFigure 5. Total free energy in a tube segment around a

moving point defect. The thick solid line and the dashed escaped structures to become more planar. This yields
line refer to the numerical and analytical approaches, a larger diŒerence in the energies of the opposite escapes:
respectively. The hypothetical free energy stored around

the driving force then increases as well as the velocity.
an arti� cially � xed defect is denoted by a thin solid line.

On the other hand, when K33 is su� ciently small
(K33 < 2K11 ), the bend deformation, which is dominant

estimate of the energy of the defect. In other words, a
defect that keeps more energy dissipates less and moves
more slowly.

Further inspection of the elastic free energy shows
that the validity of this criterion cannot be extended to
larger values of the pretilt angle Q0 , as is clear from
� gure 5 for Q0 > 50 ß , when the numerical elastic free
energy becomes larger than the analytical one. We take
this angle as the limit for the pretilt above which both
the analytical and the numerical models are likely to
break down. There are indeed several reasons why this
should be the case. As shown in [20], the constrained
structure that in the analytical model connects the defect

Figure 6. Velocity of a single defect as a function of the pretiltto the escaped � eld n
+

extends inde� nitely along the
angle Q0 . Solid and dashed lines refer to the numericalcapillary axis as Q0

� 90 ß . In particular, it reaches one
and analytical approaches, respectively. Note that theend of the computational segment of length 6R when
numerical solution is faster than the analytical one up

Q0 . 86 ß , which is the root of the equation to Q0 # 55 ß .

[A(Õ Q0 )p]1/2 5 3 cos Q0 . (15)

Then the total free energy stored in the segment is
F . 12pKR. For Q0 > 86 ß the analytic solution would
fail to obey the strong boundary conditions imposed by
the numerical method. These, in turn, are likely to keep
the defect away from its natural evolution for large
values of the pretilt, when they become less realistic, as
the wake in the director distortion could extend farther
than the computational segment. Moreover, for large
pretilts the director distortion also increases in the vicinity
of the defect, making its localization less accurate.
Conventionally, we identify the region where the energy

Figure 7. Dependence of the defect velocity on the ratioin the analytical model is larger than the energy in the
K33 /K11 for � xed pretilt (10 ß and 1 ß ). The solid linenumerical model as the range of validity of both models:
represents a radial hedgehog (s 5 1 1) and the dashed linethere the latter is generally more accurate than the
a hyperbolic hedgehog (s 5 Õ 1). The velocity is approxi-

former. mately the same for both defects when K33 <2K11 , whereas
This, however, should not be mistaken as a static the radial hedgehog moves faster than the hyperbolic

hedgehog when K33 >2K11 .criterion, since the process we are simulating is a non-
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219Dynamics of nematic point defects

at the tube wall, becomes less expensive, and even between analytical and numerical approaches, especially
the aspects of the dynamics of a single defect set asideappreciable pretilts could only produce small diŒerences

in the energies of the opposite escapes. While studying here, such as the role of back� ow and the ability of an
electric or magnetic � eld applied along the axis of thethe in� uence of the K33 /K11 ratio on the defect velocity,

diŒerences in the behaviour of a 1 1 and a Õ 1 defect tube to stop a moving defect, as predicted in [6]. More
generally, it would be desirable to extend the methodsarose. For large values of the ratio K33 /K11 , the radial

hedgehog (s 5 1 1) moves faster than the hyperbolic one illustrated in this paper to the annihilation of two point
defects with opposite topological charges either in a(s 5 Õ 1), although the diŒerence in speed is not very

large. con� ning cavity, such as a capillary tube, or in the
deep bulk.We conclude this section with a few quantitative

remarks. Experimentally observed velocities of two
This work was supported by the Ministry of Sciencedefects approaching each other at distances d& R in a

and Technology of Slovenia (Grant No. J1-0595) andtube with radius 75 mm � lled with MBBA are about
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